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Abstract

Experimental evidence suggests that the dynamics of many physical phenomena are significantly affected by the under-
lying uncertainties associated with variations in properties and fluctuations in operating conditions. Recent developments
in stochastic analysis have opened the possibility of realistic modeling of such systems in the presence of multiple sources of
uncertainties. These advances raise the possibility of solving the corresponding stochastic inverse problem: the problem of
designing/estimating the evolution of a system in the presence of multiple sources of uncertainty given limited information.

A scalable, parallel methodology for stochastic inverse/design problems is developed in this article. The representation
of the underlying uncertainties and the resultant stochastic dependant variables is performed using a sparse grid colloca-
tion methodology. A novel stochastic sensitivity method is introduced based on multiple solutions to deterministic
sensitivity problems. The stochastic inverse/design problem is transformed to a deterministic optimization problem in a
larger-dimensional space that is subsequently solved using deterministic optimization algorithms. The design framework
relies entirely on deterministic direct and sensitivity analysis of the continuum systems, thereby significantly enhancing
the range of applicability of the framework for the design in the presence of uncertainty of many other systems usually
analyzed with legacy codes. Various illustrative examples with multiple sources of uncertainty including inverse heat con-
duction problems in random heterogeneous media are provided to showcase the developed framework.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

With the rapid advances in computational power and easier access to high-performance computing
platforms, it has now become possible to computationally investigate realistic multiscale, multiphysics
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phenomena. As a direct consequence of this computational ability, there has been growing awareness that the
tightly coupled and highly nonlinear systems (that such problems are composed of) are affected to a significant
extent by the inherent (usually unresolvable) uncertainties in material properties, fluctuations in operating
conditions and system characteristics. The scale at which these phenomena occur can range from the
micro-scale (MEMS devices), macro-scale (devices/components made from polycrystalline or functionally
graded materials) to the geological scale (geothermal energy systems).

It is clearly necessary to incorporate the effects of uncertainty in property variation and operating condi-
tions for the design of components and devices that perform satisfactorily in a variety of conditions. The first
step towards design of components and devices in the presence of uncertainty is a framework for the analysis
of the direct stochastic problem, i.e. the ability to quantify, analyze and predict the effects of multiple sources
of uncertainty on the performance of the system.
1.1. Scalable direct stochastic analysis

The presence of uncertainties can be modeled in the system through reformulation of the governing equa-
tions as stochastic partial differential equations (SPDEs). A recent approach to model uncertainty is based on
the spectral stochastic finite element method (SSFEM) [1]. This method has been applied with great success to
investigate numerous physical phenomena [2–5]. Error bounds and convergence studies [6–8] have shown that
these methods exhibit fast convergence rates with increasing orders of expansions. Though the SSFEM
method has been used successfully in a variety of scenarios, it has a few drawbacks like the ‘curse-of-dimen-
sionality’ and the intense programming effort required to build the framework [9–11]. The SSFEM method
cannot be easily applied to problems involving high stochastic dimension (there has been some recent progress
in this regard, see [12]).

To solve problems in high-dimensional stochastic spaces (in a scalable way) and to allow non-smooth vari-
ations of the solution in the random space, there have been recent efforts to couple the fast convergence of the
Galerkin methods with the decoupled nature of Monte-Carlo sampling [13,14]. The Smolyak algorithm has
been used recently to build sparse grid interpolants in high-dimensional space [10,11,15]. Using this method,
interpolation schemes (for the solution) can be constructed with orders of magnitude reduction in the number
of sampled points to give the same level of approximation (up to a logarithmic factor) as interpolation on a
uniform grid. In [9], we extended this methodology to adaptively sample more important dimensions, resulting
in further computational gains. The sparse grid collocation and cubature schemes have been well studied and
utilized in different fields [16–18]. The sparse grid collocation strategy provides a seamless way to scalably
incorporate the effects of multiple sources of uncertainty in an embarrassingly parallel way. Furthermore, it
extensively utilizes multiple solutions of deterministic problems to construct the stochastic solution. This
allows the use of pre-existing deterministic legacy codes in a stochastic setting.
1.2. Stochastic inverse/design problems: state-of-the-art

In a typical inverse problem, one is interested in identifying the initial, boundary and/or material properties
given sensor measurements or desired values of the dependant variable inside the domain. For example, the
inverse heat conduction problem is of interest in a wide range of scientific and engineering areas including
manufacturing process control, metallurgy, chemical, aerospace and nuclear engineering, and food science’s
among others. There are a number of solution techniques to solve the deterministic inverse/design problem
[19,20]. Deterministic inverse techniques (usually based on exact matching or least-squares optimization) lead
to point estimates of unknowns without rigorously considering system uncertainties and without providing
quantification of the uncertainty in the inverse solution.

The Bayesian inference approach provides a robust means of taking system variabilities and parameter fluc-
tuations into account. This framework formulates a complete probabilistic description of the unknowns and
uncertainties given measurement data [21]. The Bayesian approach incorporates the known information
regarding the unknown parameters and system uncertainties into a prior distribution model that is then com-
bined with the likelihood to formulate the posterior probability density function (PPDF). This methodology
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has been used with great success to solve a variety of problems [22–25]. Though Bayesian based inference is a
powerful approach to estimate parameters in the presence of noisy measurements and uncertainties in the sys-
tem, there are a few issues that have motivated the development of alternate means of solving stochastic
inverse/design problems. The higher-order statistics of the unknown are highly-dependent on the form of
the prior distribution chosen. Furthermore, the inputs to this framework are a finite number of deterministic
sensor measurements, i.e. this methodology provides no means of incorporating statistics and/or PDF of the
measured quantities. Though possible, this framework has not been applied to design problems with multiple
sources of uncertainty.

An alternate approach that tries to resolve the issues raised above was proposed in [26]. In this method, a
spectral stochastic formulation was utilized to represent the input uncertainties. This framework was applied
to the stochastic inverse heat conduction problem. Since this framework utilized a GPCE based approach, it
required extensive software developments to convert the validated deterministic direct, sensitivity and adjoint
problems to their corresponding stochastic counterparts. The input measurement data in this framework was
assumed to be given in the form of an unphysical spectral representation. Furthermore, the coupled nature of
the solution strategy precluded the extension of this methodology to include multiple sources of uncertainty.
In the current work, we extend our previous work in [26] into a scalable, decoupled parallel framework for
solving stochastic inverse problems.

The keys properties that a widely usable stochastic optimization framework must possess are:

� The ability to seamlessly utilize available, validated deterministic simulators. This will significantly enhance
the applicability of the stochastic optimization/inverse framework to areas of analysis that utilize complex
legacy codes. Such complex legacy codes cannot be rewritten to include stochastic analysis without a great
deal of effort.
� The framework must be highly scalable to provide the ability to solve complex problems in a reasonable

amount of time.
� The framework must be able to seamlessly incorporate the effects of multiple sources of uncertainties.

In the present work, we develop a stochastic optimization framework where the uncertainty represen-
tation is based on a sparse grid collocation approach. Utilizing a sparse grid collocation strategy guaran-
tees scalability, the ability to seamlessly incorporate multiple sources of uncertainty and more importantly
relies entirely on multiple calls to deterministic simulators [9]. The stochastic inverse/design problem is
posed as a stochastic optimization problem. Using a sparse grid representation of the design variable con-
verts the stochastic optimization problem into a deterministic optimization problem in a larger-dimen-
sional space. This deterministic optimization problem is subsequently solved using standard gradient
based optimization algorithms. A novel stochastic sensitivity computation method to compute the sensitiv-
ity of the dependant stochastic variables with respect to the design stochastic variables is formulated. This
formulation arises naturally from posing the problem in the sparse grid framework and involves multiple
calls to deterministic sensitivity problems. To the best knowledge of the authors, this is the first frame-
work that: (1) addresses inverse/design problems in the presence of multiple sources of uncertainty, (2)
relies completely on deterministic simulators, (3) requires no a priori assumption on the design variables
(as compared to the Bayesian framework), and (4) is based on off-the-shelf optimization algorithms. A
subtle qualification of (3): no prior model representation needs to be assumed as is usually done in the
Bayesian framework. However, the conventional sparse grid collocation strategy does implicitly assume
that the function is piecewise smooth. Nevertheless, by suitably refining the depth of interpolation, arbi-
trary functions can be represented. Furthermore, adaptive sparse grid strategies can also remove this
implicit assumption of smoothness completely.

The outline of the paper is as follows: In the next section, the direct problem of interest is posed,
all the necessary variables and function spaces are defined and some preliminary issues clarified. In Sec-
tion 3, the definition of the stochastic inverse problem is given and the scalable framework is presented.
This is followed by Section 4, where numerical examples showcasing the proposed framework are
presented. We finally conclude with a summary of this work and a discussion of future avenues of
research in Section 5.
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2. The stochastic direct problem: definition, solution strategy and physical interpretation

The developments detailed in the present paper are applicable to a general class of stochastic inverse
problems. For the sake of clarity of presentation, we will henceforth limit our discussion to a particular
class of problems (namely, the stochastic inverse heat conduction problem). Before defining the stochastic
inverse problem of interest, the stochastic direct problem, that describes the physical phenomena, is repre-
sented first.

2.1. Definition of the stochastic direct problem

Denote by D, a bounded connected region in Rnsd ;where nsd ¼ 1; 2; 3 is the number of space dimensions
over which D is defined. Denote the boundary of D as oD. The boundary oD is divided into disjoint sub-
boundaries oDh and oDh ðoDh

S
oDh ¼ oD; oDh

T
oDh ¼ ;) such that Dirichlet boundary conditions are

applied on oDh and Neumann boundary conditions are applied in oDh (see Fig. 1). The material property that
affects the thermal evolution in the domain is the thermal diffusivity, a ¼ k

qCp
, where k is the thermal conduc-

tivity, q is the density of the material and Cp is the specific heat of the material.
Assume that there is some uncertainty in the application of the thermal boundary conditions. Without loss

of generality, we will assume that the Neumann boundary conditions are enforced with some uncertainty. i.e.
the flux boundary conditions are stochastic while the Dirichlet boundary conditions are deterministic. The
thermal boundary conditions can be understood to be realizations from a space of events. Let us denote this
space as Xq. We can associate a r-algebra F q and a probability measure Pq : Xq ! ½0; 1� to construct a prob-
ability space ðXq;F q;PqÞ that describes the variability in the stochastic heat flux q [27]. Analogously, the ther-
mal properties in the domain D (here the diffusivity a) are also assumed to be stochastic. Consequently, we can
define a probability space ðXa;F a;PaÞ that describes the variability in the diffusivity.

The temperature in the domain depends on the uncertainty in the boundary conditions and material prop-
erties as well as temporal and spatial coordinates of measurement. We denote this dependance by the function
hðx; t;xq;xaÞ : D� T � Xq � Xa ! R, where x 2 D, t 2 T � ½0; tmax�, xq 2 Xq, xa 2 Xa. Note that this sto-
chastic process, hð�Þ lies in the product space of the input uncertainties (i.e. Xq � Xa). In fact, most dependant
and independent variables one encounters in stochastic analysis are usually random processes [7,28–30] that
are defined in product spaces. These variables (for instance qðx;xqÞ) usually have one structure in the stochas-
tic space qðxq; �Þ and another in the physical space qð�;xÞ. The numerical analysis/approximation [7,28] of such
functions can be performed by defining the appropriate tensor product spaces. The interested reader is referred
to [7,28] for insightful discussions on the definitions of these product spaces. Following [7,28], we define appro-
priate function spaces that encode variations of the function in the physical domain D� T and in the stochas-
tic space Xq � Xa.

Denote the Banach space LpðDÞ as the space of functions that are pth power integrable, i.e. f 2 LpðDÞ ifR
D
jf jpdx <1. Let W s;pðDÞ denote the Sobolev space of functions having generalized derivatives up to order

s in the space LpðDÞ. Whenever p ¼ 2, we use H s instead of W s;2. For a Sobolev space H 1, define its stochastic
counterpart, H1, as the product space H 1 � L2ðXq � XaÞ. Denote the space of functions defined in oDq with
Fig. 1. Schematic of the direct problem.
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finite kth norm (k any positive integer) kqkk
oDq
¼ ð
R

oDq
jqðxÞjkdxÞ1=k as HðoDqÞ. Define the stochastic Banach

space Lk
Pq
ðXq : HðoDqÞÞ as [28]
Lk
Pq
ðXq : HðoDqÞÞ :¼ q : Xq ! HðoDqÞjq measurable;

Z
Xq

kqðxqÞkk
oDq

dPqðxqÞ <1
( )

: ð1Þ
Having defined the necessary function spaces, let us now turn to the definition of the stochastic direct problem.
Consider the tensor product Hilbert space, H h � H 1ðD; L2ðT ÞÞ � L2ðXq � XaÞ. The direct problem can be
posed in this space as follows: Find a stochastic function h � hðx; t;xq;xaÞ : D� T � Xq � Xa ! R, such that
P-a.e. (almost everywhere) in Xa � Xq, the following equation holds:
ohðx; t;xq;xaÞ
ot

¼ r½aðx;xaÞrhðx; t;xq;xaÞ�; x 2 D; ð2Þ

ohðx; t;xq;xaÞ
on

¼ qðx; t;xqÞ; x 2 oDh; ð3Þ

hðx; t;xq;xaÞ ¼ hðx; tÞ; x 2 oDh; ð4Þ
hðx; 0;xq;xaÞ ¼ 0; x 2 D: ð5Þ
Note that the Dirichlet conditions on oDh as well as the initial conditions are deterministic (without loss of
generality). For the sake of brevity, we shall denote the above set of equations as
Bðh : x; t;xq;xaÞ ¼ 0: ð6Þ

We make the following assumptions regarding the stochastic processes q and a [7,28]:

Assumption 1. q is a bounded stochastic function.

Assumption 2. a is positive and uniformly coercive:
9amin; amax 2 ð0;1Þ 3 Paðxa 2 Xa : aðxa; xÞ 2 ½amin; amax� 8x 2 DÞ ¼ 1:
Assumption 3. Following [28], we assume that the stochastic boundary condition q satisfies some regularity
assumption, i.e. for a given k > 2 (defined a priori) q 2 Lk

Pq
ðXq : HðoDqÞÞ.

Theorem 2.1a. There is a unique weak solution to the stochastic parabolic problem.

Proof. With Assumptions 1 and 2 on the elliptic operator and the regularity constraints on the boundary con-
ditions, coupled with the definition of the corresponding function spaces, this is a direct application of the exis-
tence and uniqueness results for parabolic equations given in [31, Theorem 1] and [32, Theorem 2]. h
2.1.1. Steady state problem: the stochastic elliptic operator
The steady-state behavior of the system defined by the stochastic parabolic equation defined on the physical

domain D is the corresponding stochastic elliptic equation. The evolution equation for temperature is simpli-
fied into the following:
r½aðx;xaÞrhðx;xq;xaÞ� ¼ 0; x 2 D; ð7Þ
ohðx;xq;xaÞ

on
¼ qðx;xqÞ; x 2 oDh; ð8Þ

hðx;xq;xaÞ ¼ hðxÞ; x 2 oDh: ð9Þ
Theorem 2.1b. There is a unique weak solution to the stochastic elliptic problem.

Proof. The existence and uniqueness follow from a straightforward application of the Lax–Milgram lemma
[7]. h
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2.2. Solution techniques for the direct problem: collocation based approximations of the stochastic spaces

The solution methodology of the above set of coupled differential equations is to first reduce the complexity
of the problem by reducing the probability space into a finite-dimensional space. In some cases the random
fields qðx; t;xqÞ and aðx;xaÞ can be represented/described by finite length random vectors
½n1

q; . . . ; nn
q� : Xq ! Rn and ½n1

a; . . . ; nm
a � : Xa ! Rm, respectively. In other cases the random fields can have a spa-

tial correlation. There is rich literature on techniques to extract/fit correlations for these random fields from
input experimental/numerical data. This is an area of intense ongoing research [33,34]. Using the ‘finite-dimen-
sional noise assumption’ [7], the random process is decomposed into a finite set of random variables [9]. Upon
decomposition and characterization of the random inputs, qðxqÞ and aðxaÞ into these random variables,
ni

qðxqÞ, i ¼ 1; . . . ; n, and ni
aðxaÞ, i ¼ 1; . . . ;m, respectively, the solution to the system of Eq. (6) can be

described by this set of random variables. The dependance of temperature can now be written as
hðx; t;xq;xaÞ ¼ hðx; t; n1
qðxqÞ; . . . ; nn

qðxqÞ; n1
aðxaÞ; . . . ; nm

a ðxaÞÞ ¼ hðx; t; nq; naÞ; ð10Þ
where nq ¼ fn1
qðxqÞ; n2

qðxqÞ; . . . ; nn
qðxqÞg and na ¼ fn1

aðxaÞ; n2
aðxaÞ; . . . ; nm

a ðxaÞg. Eq. (6) can be rewritten in the
following form:
Bðh : x; t; nq; naÞ ¼ 0: ð11Þ
We denote the product space of these random variables as Xh � Xq � Xa.

Remark 2.1. It has to be emphasized that the solution of the above set of SPDEs requires an analytic (or
numerical) representation of the input uncertainties (namely, the stochastic heat flux, and the thermal
diffusivity). Our recent work [33] outlines a technique to construct a model for the thermal diffusivity
variability. We assume that a model for the heat flux is similarly available (say, using a KL expansion) [9].

The dimensionality, dh of the stochastic space Xh can become very large. Usually, the dimensionality, da of
representation of the property/microstructural variability, Xa is da � 9–15, while the dimensionality, dq of rep-
resentation of the heat flux is dq � 2–5. Hence the dimensionality, dh ¼ da þ dq of the stochastic space is at
least of the order of 10. Any coupled strategy would make the solution of the direct problem (let alone the
inverse problem) a computationally challenging task. We therefore utilize a collocation based strategy for rep-
resenting and solving the direct SPDEs [9].

In the collocation based approach, the stochastic solution to the SPDE given by Eq. (11) is converted into a
finite number, n of deterministic PDEs. That is, the stochastic space Xh is approximated as a multi-dimen-
sional interpolant. This interpolant is constructed using a finite set of function evaluations [9,35]. An interpo-
lant-based approximation is constructed by sampling the two stochastic spaces, Xq and Xa using nq and na

points, respectively. The collocation approach involves the solution of nq � na PDEs of the following form:
Bðh : x; t; ni
q; n

j
aÞ ¼ 0; i ¼ 1; . . . ; nq; j ¼ 1; . . . ; na: ð12Þ
The stochastic solution is then given in terms of these nq � na deterministic solutions, hðx; t; ni
q; n

j
aÞ as
hðx; t; nq; naÞ ¼
Xnq

i¼1

Xna

j¼1

hðx; t; ni
q; n

j
aÞLiðnqÞLjðnaÞ; ð13Þ
where Li are corresponding (sparse grid) interpolating functions [9].

2.2.1. Postprocessing formulae: computing moments

The statistics of the random solution can be obtained by
hhpðx; tÞi ¼
Xnq

i¼1

Xna

j¼1

hpðx; t; ni
q; n

j
aÞ
Z

Xq

LiðnqÞqðnqÞdnq

Z
Xa

LjðnaÞqðnaÞdna

" #
; ð14Þ
where p is any positive integer (p ¼ 1 gives the mean, p ¼ 2 gives the second moment, etc.). The integrands on
the right-hand side of the above equation are independent of the function values and depend only on the par-
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ticular interpolation function, Li. Hence these integrals can be computed a priori to enhance the computa-
tional efficiency of the algorithm. Denoting these integrals as wj

a ¼
R

Xa
LjðnaÞqðnaÞdna and wi

q ¼R
Xq

LiðnqÞqðnqÞdnq, the statistics can be computed as
hhpðx; tÞi ¼
Xnq

i¼1

Xna

j¼1

½hpðx; t; ni
q; n

j
aÞwi

qwj
a�: ð15Þ
2.3. Physical interpretation of the stochastic solution: a prelude to the inverse problem

The previous subsection discusses the numerical methodology to compute the stochastic solution
hð�; �; nq; naÞ 2 Xq � Xa. Given stochastic representations of the input uncertainties q ¼ G1ðnqÞ and a ¼ G2ðnaÞ,
the sparse grid collocation allows one to construct a stochastic representation of the dependant variable
h ¼ GðnhÞ. This is pictorially represented in Fig. 2 for a simple case where a is a constant and the heat flux
can be represented in a two-dimensional stochastic space. The stochastic solution procedure constructs the
resultant stochastic temperature. This stochastic temperature is consequently defined in a two-dimensional
stochastic space.

We emphasize that the stochastic representation, h ¼ GðnhÞ, of any random process is a purely abstract
scheme. From a physically realizable/observable perspective, only operations on the stochastic representation,
h ¼ GðnhÞ, make sense (for instance, realizations of events, moments or the probability distribution function).
It is clear that these operations are reduced (or averaged) representations of the abstract random process. This
observability/measurability argument strongly points to the necessity of posing the inverse stochastic problem
in a way that the measured or desired dependant variables are given in the form of moments or PDF.

In this work, we argue that the design variables should also be computed in the form of moments or PDF.
The reason for this arises from the analysis of the existence and uniqueness of the kth order moment of the
solution of Eq. (6), hhkðx; tÞi ¼

R
Xq

R
Xa

hkðxÞdPaðxaÞdPqðxqÞ, given the kth moment of the input stochastic
heat flux q. In [28], an investigation is provided of the existence/uniqueness of the kth moment of the depen-
dant variable in a stochastic elliptic equation (Eq. (7)) in the context of stochastic loading and boundary con-
ditions. An elegant description/construction of an equation of the kth moment of the dependant variable is
given based on tensor product of appropriate function spaces. It is shown that given the kth moment of
the input stochastic variable, a unique kth moment for the corresponding dependant variable exists. It is sim-
ple to extend these developments to the present case where the coefficients in the elliptic operator are also ran-
dom (in the present work, Assumption 2 is equivalent to Eq. (7) in [28]). We state the corresponding
theoretical results without going into the details of the proofs. The interested reader is referred to [28] for
an exhaustive discussion of the same.

Theorem 2.2. If q satisfies Assumption 3, the kth order moment of h (that solves Eq. (7)) exists.

Proof. Follows from Theorem 3.1 in [28]. h
Fig. 2. The stochastic direct problem, B, converting a random process q to a random process h.
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Theorem 2.3. Given the kth order moments of the stochastic function q, hqkðx; tÞi ¼
R

Xq
qkðx; t;xqÞdPqðxqÞ, a

unique solution of hhkðx; tÞh¼
R

Xq

R
Xa

hkðx; t;xq;xaÞdPaðxaÞdPqðxqÞ exists, where h solves Eq. (7).

Proof. Follows from Theorem 3.2 in [28] (which is an application of the Lax–Milgram theorem to the bilinear
operator that describes the kth order moment equation). h

Remark 2.2. It has to be noted that the uniqueness/existence proofs stated above are for the stochastic elliptic
problem. The authors contend that it is possible to apply the theory of [28] coupled with the uniqueness/exis-
tence proofs of the stochastic parabolic equation (Theorem 2.1a) [32] to construct uniqueness/existence proofs
for the kth moments of the dependant variable in the stochastic parabolic equation. We have not attempted to
do so as this is beyond the scope of the current article. Nevertheless, our numerical experiments in Section 4.1
clearly seem to validate this hypothesis.

Remark 2.3. Given a complete description of the input stochastic quantities (i.e. a functional form for q (say)
q ¼ GðnqÞ, n 2 C 	 Rd), using Theorem 1, one can construct a complete description of the dependant stochas-
tic quantities. On the other hand, given only finite/limited information in terms of (say) the kth moment of the
input stochastic quantities, Theorems 2.2 and 2.3 show that a unique kth moment solution exists. Our com-
putational framework for the solution of the direct problem requires a complete description of the input sto-
chastic quantities. Given k moments of the input stochastic quantities, it is possible to arbitrarily construct a
stochastic process that exactly satisfies these moments. Now, using this input stochastic process, we can solve
for the dependant stochastic variable in Eq. (6), with Theorems 2 and 3 guaranteeing that k moments of the
dependant variable exist and are uniquely determined by the k moments of the input stochastic process.

It has to be noted here that we only have guarantees of uniqueness and existence of the moments/PDF of the
dependant variable given the moments/PDF of the input stochastic variable. No such guarantee can be made
on the existence (let alone uniqueness) of the moments of the input stochastic process given some data (in
terms of moments/PDF) of the dependant variable. This is the typical ill-posedness phenomena seen in most
inverse problems [19]. However, this problem can be partially resolved by expanding the solution space and
posing the problem in a least-squares (Tikhonov) sense [20].

We now turn to the definition and solution strategy for the stochastic inverse problem.
3. The stochastic inverse problem

3.1. Physical motivation of the stochastic inverse problem: design in the presence of uncertainties

The motivation of the inverse problem is as follows: we are interested in designing a micro-scale heat sink
that maintains a specific temperature profile at one end. The aim is to design the optimal heat flux on the other
end such that this thermal profile is maintained. The thermal evolution implicitly depends on the material
properties (here, the thermal diffusivity and heat capacity) of the device. The problem is complicated by the
fact that the exact property variation of the device is unknown. That is, the complete microstructural descrip-
tion of the device is unknown (limitations in experimental characterization, time and cost restrictions preclude
a complete characterization of the device). Only some statistical correlations about the microstructure are
available. This necessitates a stochastic analysis assuming the thermal property to be a stochastic field. The
problem definition is then as follows (see Fig. 3): Design the optimal heat flux on one end of the device such
that a specified thermal profile is maintained on the other end (that is assumed to be insulated), in the presence
of microstructural variability. The physical phenomena that directs the thermal evolution is simple diffusion.
We will return to the solution of this problem in Section 4.2.

3.2. Definition of the inverse/design problem

The inverse/design problem is defined along the lines of the direct problem defined in Section 2. Without
loss of generality, we assume that the heat flux qðx; t; nqÞ is unknown in the boundary oDh. A set, Y ðxi; tÞ, of
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Fig. 3. Schematic of the design problem: The thermal diffusivity of the device is a random field. The variability of the heat flux at the left
wall is sought leading to a desired temperature distribution on the right wall. The right wall is assumed to be insulated.
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observed/desired temperature readings at a finite number of locations, i ¼ 1; . . . ; s, in the domain (and/or
boundary) are provided. These temperature measurements can be given in two forms:

� Case I: The first p moments of the temperature measurements at these sensor locations are given.
� Case II: The complete probability distribution functions of the temperature variation at these sensor loca-

tions are given.

Given this information, the problem is to construct the optimal stochastic heat flux, qðx; tÞ; x 2 oDh, such
that the observed/desired temperature measurements (see Fig. 4) at the s sensor locations are maintained. The
design problem can be stated for each of the two cases above as follows:

Case I: Find moments of the stochastic heat flux, hqkðx; t; nqÞi, x 2 oDh, t 2 T , k ¼ 1; . . . ; p, such that the
stochastic system defined by Eqs. (2)–(5) (with q in Eq. (3) taken as qðx; t; nqÞ), results in a temperature pro-
file that matches p moments of the temperature measurements, hY kðxi; tÞi, k ¼ 1; . . . ; p at s sensor locations
ðxi; i ¼ 1; . . . ; sÞ.
Case II: Find the probability distribution function (PDF) of the stochastic heat flux, Pr½qðx; t; nqÞ�, x 2 oDh,
t 2 T , such that the stochastic system defined by Eqs. (2)–(5) (with q in Eq. (3) taken as qðx; t; nqÞ), results in
a temperature profile that matches the PDF of the temperature measurements, Pr½Y kðxi; tÞ� at s sensor
locations ðxi; i ¼ 1; . . . ; sÞ.
Temperature
sensors

Fig. 4. Schematic of the inverse problem.
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The motivation for posing the inverse problems in terms of construction of moments (CASE I) and the
PDF (CASE II) of the stochastic heat flux is based on the arguments on physical observability/measurability
made in Section 2.3.

Remark 3.1. In the context of design applications such as the one introduced in Fig. 3, the given moments or
PDFs should be interpreted as ‘desired’ variability or performance robustness. In the context of inverse
problems driven by data, this variability maybe induced either by sensor noise (in the case of a single
experiment) or because of the variability of the random topology (repeated experimentation with random
realizations of the medium will lead to variability in measurements even without measurement noise). All of
these problems can be stated in the form of the problems given above.
3.3. Representing the stochastic design variable (heat flux): computational aspects

Following the usual procedure used in stochastic analysis [1], the unknown random process, q, can be rep-
resented as a function of n uncorrelated random variables, nq ¼ fn1

q; . . . ; nn
qg. Following the rational of using a

collocation based strategy for representing random processes, we can approximate the unknown stochastic
heat flux as a polynomial interpolant using a finite number, nq, of realizations of the flux over the stochastic
space. Then, the stochastic flux at any point nq is evaluated as
qðx; t; nqÞ ¼
Xnq

i¼1

qðx; t; ni
qÞLiðnqÞ; i ¼ 1; . . . ; nq; ð16Þ
where the ni
q are collocation points in the stochastic space where the flux is sampled [9]. With this assumption,

we have transferred the problem of computing a stochastic function, qðx; t; nqÞ (defined in oDh � Xq), into a
problem of computing a finite set of deterministic functions, qðx; t; ni

qÞ; i ¼ 1; . . . ; nq (defined in oDh).

Remark 3.2. Without loss of generality, we can assume that nq ¼ fn1
q; . . . ; nn

qg are uncorrelated uniform
random variables defined in the unit hypercube ½0; 1�n. In Section 3.7, we provide numerical illustrations of the
invariance of the random process, q, to the choice of the random variables used to represent it.

Remark 3.3. In the first design case, we are interested in estimating/designing only the moments of the sto-
chastic function, hqki ¼

R
Xq

qkðnqÞPqðnqÞdnq and in the second case we are interested in estimating the proba-
bility distribution function of this stochastic function Prðq 6 q
Þ. These can be viewed as essentially
postprocessing operations once the stochastic heat flux representation in Eq. (16) is constructed. The design
problem can now be stated in terms of estimating the heat flux at these finite number of collocation points.

i
Case I: Compute qðx; t; nqÞ; x 2 oDh, i ¼ 1; . . . ; nq, such that the stochastic system defined by Eqs. (2)–(5)
(with q in Eq. (3) computed from Eq. (16)), results in a temperature profile that matches p moments of
the temperature measurements, hY kðxi; tÞi; k ¼ 1; . . . ; p at s sensor locations ðxi; i ¼ 1; . . . ; sÞ.
Case II: Compute qðx; t; ni

qÞ; x 2 oDh, i ¼ 1; . . . ; nq, such that the stochastic system defined by Eqs. (2)–(5)
(with q in Eq. (3) computed from Eq. (16)), results in a temperature profile that matches the PDF of the
temperature measurements, Pr½Y kðxi; tÞ� at the s sensor locations ðxi; i ¼ 1; . . . ; sÞ.

Eq. (2) together with the known temperature boundary conditions on oDh (Eq. (4)), initial conditions (Eq.
(5)) and the temperature conditions (at the sensor locations) defines an ill-posed problem that can be solved to
calculate the unknown stochastic heat flux q in oDh. We assume that a solution to the inverse problem exists in
the sense of Tikhonov. We are looking for a solution fq
i g

nq

i¼1 such that
CF ½fq
i g
nq

i¼1� 6 CF ½fqig
nq

i¼1� 8qðx; t; nqÞ ¼
Xnq

i¼1

qiLiðnqÞ: ð17Þ
Here, CF ½fqig
nq

i¼1� is a cost functional that quantifies how well the designed heat flux performs.

Remark 3.4. For a given fqig
nq

i¼1, the cost functional is computed using the temperature, hðx; t; nq; na : fqig
nq

i¼1Þ.
This temperature is obtained from the solution of the direct problem in Eqs. (2)–(5) with q as a (known)
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stochastic function, that is, using fqig
nq

i¼1 as the guessed heat flux on oDh, the known initial conditions and the
known temperature conditions on oDh, solve Eq. (2) for the stochastic temperature. Note that for the sake of
clarity, we write hðx; t; nq; na : fqig

nq

i¼1Þ as hðx; t; nq; naÞ.

This cost functional is usually quadratic in nature to utilize the extensive quadratic optimization tools/algo-
rithms available. This definition of the inverse problem converts the above design problem into an optimiza-
tion problem.

Remark 3.5. With the collocation based representation of the unknown stochastic heat flux (Eq. (16)), the
stochastic inverse problem is transformed into a problem of determining a set of deterministic quantities. By
specifying a quadratic cost functional, this deterministic inverse problem is posed as a deterministic optimization

problem.
3.4. Definition of the cost functional

The design variables for both cases discussed above are now the heat flux at a finite number of collocation
points fqig; i ¼ 1; . . . ; nq. The cost functional quantifies how well the designed heat flux performs.

Remark 3.6. Note that for the sake of clarity, we write hðxj; t; n
r
q; n

e
a : fqig

nq

i¼1Þ as hðxj; t; n
r
q; n

e
aÞ.
Case I: In the first case, the cost functional must measure how well the stochastic heat flux satisfies the

moments of temperature at the sensor points. We define the cost functional in this case as
CF ½fqig
nq

i¼1� ¼
1

2

Xs

j¼1

Z tmax

t¼0

½b1ðhhðxj; tÞi � hY ðxj; tÞiÞ2 þ b2ðhh2ðxj; tÞi � hY 2ðxj; tÞiÞ2 þ � � �

þ bpðhhpðxj; tÞi � hY pðxj; tÞiÞ2�dt; ð18Þ
where hhkðxj; tÞi is the kth moment of the temperature at the jth sensor location at time t, and the bi are (user
defined) positive scalars that weigh the different moments differently. Here, h is the solution of the direct sto-
chastic temperature evolution equation (see Remark 3.4) and Y is the desired temperature. Using Eq. (15) to
represent the various moments in terms of the weights w, the cost functional can be written as
CF ½fqig
nq

i¼1� ¼
1

2

Xs

j¼1

Z tmax

t¼0

b1

Xnq

r¼1

Xna

e¼1

wr
qwe

ahðxj; t; n
r
q; n

e
aÞ � hY ðxj; tÞi

 !2
2
4

þb2

Xnq

r¼1

Xna

e¼1

wr
qwe

ah
2ðxj; t; n

r
q; n

e
aÞ � hY 2ðxj; tÞi

 !2

þ � � � þ bp

Xnq

r¼1

Xna

e¼1

wr
qwe

ah
pðxj; t; n

r
q; n

e
aÞ � hY pðxj; tÞi

 !2
3
5dt: ð19Þ
This can be compactly written as

Cost functional – Case I:

CF ½fqig
nq

i¼1� ¼
Xp

c¼1

1

2

Z tmax

t¼0

Xs

j¼1

bc

Xnq

r¼1

Xna

e¼1

wr
qwe

ah
cðxj; t; n

r
q; n

e
aÞ � hY cðxj; tÞi

 !2
2
4

3
5dt;

2
4 ð20Þ
where c loops over the p moments of the stochastic temperature.
Case II: In this case, the cost functional must measure how well the stochastic heat flux results in the prob-
ability distribution function of temperature at the sensor points being satisfied.
Since the probability distribution function, the cumulative distribution function and inverse cumulative
distribution function represent the same distribution in different ways (see Fig. 5), for the sake of com-
putational effectiveness, the cost functional is defined in terms of the inverse cumulative distribution
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function. This choice is also motivated by the fact that the inverse CDF has a fixed, known support
([0, 1]) and this greatly simplifies defining the cost functional. Denote ��1½f ; u� as the inverse cumulative
distribution of the random variable f. u is the spanning variable, u 2 ½0; 1� (Fig. 5 right). The inverse
CDF is utilized because it is computationally easy to represent it using the collocation based polyno-
mial interpolation representation of the temperature (Eq. (13)). The cost functional is defined as

Cost functional – Case II:

CF ½fqig
nq

i¼1� ¼
1

2

Xs

j¼1

Z tmax

t¼0

Z 1

0

ð��1½hðxj; tÞ; u� � ��1½Y ðxj; tÞ; u�Þ2dudt: ð21Þ

Consider the stochastic temperature at a sensor location xs at some time t. This can be represented in terms
of the computed collocated temperatures as

hðxs; t; nq; naÞ ¼
Xnq

r¼1

Xna

e¼1

hðxs; t; n
r
q; n

e
aÞLrðnqÞLeðnaÞ; ð22Þ

where nq ¼ fn1
q; . . . ; nn

qg and na ¼ fn1
a; . . . ; nm

a g. We have assumed that ni
q; i ¼ 1; . . . ; n are uniform random

variables in [0,1]. ��1 is a function mapping [0,1] to the range of hðxs; tÞ. It follows that ��1 can be expressed
as the marginal of the temperature over one of the stochastic dimensions:
Pr
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n

0

0

0

0

0

Fig. 5.
the CD
��1½hðxs; tÞ; n1� ¼
Z 1

n2
q¼0

� � �
Z 1

nn
q¼0

Z
Xa

Xnq

r¼1

Xna

e¼1

hðxs; t; n
r
q; n

e
aÞLrðn1

q; n
2
q; . . . ; nn

qÞLeðnaÞdn2
q � � � dnn

q dna

¼
Xnq

r¼1

Xna

e¼1

hðxs; t; n
r
q; n

e
aÞ
Z 1

n2
q¼0

� � �
Z 1

nn
q¼0

Z
Xa

Lrðn1
q; n

2
q; . . . ; nn

qÞLeðnaÞdn2
q � � � dnn

q dna

¼
Xnq

r¼1

Xna

e¼1

we
ahðxs; t; n

r
q; n

e
aÞ

" # Z 1

n2
q¼0

� � �
Z 1

nn
q¼0

Lrðn1
q; n

2
q; . . . ; nn

qÞdn2
q � � � dnn

q

¼
Xnq

r¼1

Xna

e¼1

we
ahðxs; t; n

r
q; n

e
aÞfrðn1

qÞ: ð23Þ
For the sake of brevity, we will denote this as
��1½hðxs; tÞ; u� ¼
Xnq

r¼1

Xna

e¼1

we
ahðxs; t; n

r
q; n

e
aÞ

( )
frðuÞ: ð24Þ
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3.5. Optimization strategy: gradient of the cost functional and the stochastic sensitivity equations

A gradient based optimization strategy is used to design the optimal heat flux fqig. The first step is to com-
pute the gradient of the cost functional with respect to the design variables. The directional derivative,
DDqv

CF ½fqig
nq

i¼1� of the cost functionals in Eqs. (20) and (21) can be computed as follows:

Gradient of the cost functional – Case I:
DDqv
CF ½fqig

nq

i¼1� ¼
Xp

c¼1

Xs

j¼1

Z tmax

t¼0

bc

Xnq

r¼1

Xna

e¼1

wr
qwe

ah
cðxj; t; n

r
q; n

e
aÞ � hY cðxj; tÞi

 !"

�DDqv

Xnq

r¼1

Xna

e¼1

hcðxj; t; n
r
q; n

e
aÞwr

qwe
a

" #
dt: ð25Þ

Gradient of the cost functional – Case II:

DDqv
CF ½fqig

nq

i¼1� ¼
Xs

j¼1

Z tmax

t¼0

Z 1

0

ð��1½hðxj; tÞ; u� � ��1½Y ðxj; tÞ; u�Þ

�DDqv

Xnq

r¼1

Xna

e¼1

we
ahðxs; t; n

r
q; n

e
aÞ

( )
frðuÞ

 !
du dt: ð26Þ

The directional derivative of the cost functional with respect to a design variable qv depends on evaluation
of the terms DDqv

ð
Pnq

r¼1

Pna
e¼1h

cwr
qwe

aÞ. This can be simplified as follows:
DDqv

Xnq

r¼1

Xna

e¼1

hcðx; t; nr
q; n

e
aÞwr

qwe
a

 !
¼
Xnq

r¼1

Xna

e¼1

wr
qwe

aDDqv
hcðx; t; nr

q; n
e
aÞ

¼
Xnq

r¼1

Xna

e¼1

wr
qwe

ach
c�1ðx; t; nr

q; n
e
aÞDDqv

hðx; t; nr
q; n

e
aÞ: ð27Þ
This requires the calculation of DDqv
hðx; t; nr

q; n
e
aÞ. Define the directional derivative of the temperature with re-

spect to each design variable as Hðx; t; nq; na : fqig
nq

i¼1;DqvÞ � DDqv
hðx; t; nq; na : fqig

nq

i¼1Þ. This defines the sensi-
tivity temperature field as the linear in Dqv part of hðx; t; nq; na : fqig

nq

i¼1;i 6¼v; qv þ DqvÞ, where Dqv is a
perturbation to one of the design variables:
hðx; t; nq; na : fqig
nq

i¼1;i6¼v; qv þ DqvÞ ¼ hðx; t; nq; na : fqig
nq

i¼1Þ þHðx; t; nq; na : fqig
nq

i¼1;DqvÞ þ h:o:t: ð28Þ
The stochastic temperature sensitivity equations are simply obtained by taking the directional derivative of
the equations that define the parametric direct problem used to compute h for each heat flux q. These direc-
tional derivatives are taken with respect to nq collocation points used to represent q (i.e. w.r.t. the design
variables).

Stochastic sensitivity equations:
oHðx; t; nr
q; n

e
a : fqkg

nq

k¼1;DqvÞ
ot

¼ r½aðx; ne
aÞrHðx; t; nr

q; n
e
a : fqkg

nq

k¼1;DqvÞ�; ð29Þ

oHðx; t; nr
q; n

e
a : fqkg

nq

k¼1;DqvÞ
on

¼ Dqvdv;r; x 2 oDh; ð30Þ

Hðx; t; nr
q; n

e
a : fqkg

nq

k¼1;DqvÞ ¼ 0; x 2 oDh; ð31Þ
Hðx; 0; nr

q; n
e
a : fqkg

nq

k¼1;DqvÞ ¼ 0; x 2 D: ð32Þ
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Notice the elegant decoupling that occurs in Eq. (30) above. The sensitivity of the stochastic temperature
computed at the ni

q collocation point depends only on perturbations to the qith design variable. Also note that
the sensitivity equations depend only on the perturbation to the heat flux, Dqv and not on the heat flux, qv. This
is due to the fact that the heat flux enters in Eq. (6) as a linear term. Furthermore, no other variable/parameter
depends nonlinearly on the heat flux.

Returning back to Eq. (27), this can now be rewritten as
DDqv

Xnq

r¼1

Xna

e¼1

hcðx; t; nr
q; n

e
aÞwr

qwe
a

 !
¼
Xnq

r¼1

Xna

e¼1

wr
qwe

aDDqv
hcðx; t; nr

q; n
e
aÞ

¼
Xnq

r¼1

Xna

e¼1

wr
qwe

ach
c�1ðx; t; nr

q; n
e
aÞDDqv

hðx; t; nr
q; n

e
aÞ

¼
Xnq

r¼1

Xna

e¼1

wr
qwe

ach
c�1ðx; t; nr

q; n
e
aÞHðx; t; n

r
q; n

e
a : fqkg

nq

k¼1;DqvÞdv;r

¼
Xna

e¼1

wv
qwe

ach
c�1ðx; t; nv

q; n
e
aÞHðx; t; n

v
q; n

e
a : fqkg

nq

k¼1;DqvÞ: ð33Þ
Thus, the calculation of the gradient of the cost functional requires the computation of the sensitivity of the
stochastic temperature to perturbations in these design variables. The complete stochastic temperature sensi-
tivity can be constructed as
Hðx; t; nq; na : fqkg
nq

k¼1;DqvÞ ¼
Xnq

r¼1

Xna

e¼1

Hðx; t; nr
q; n

e
a : fqkg

nq

k¼1;DqvÞLrðnqÞLeðnaÞ: ð34Þ
Denote the gradient of the cost functional with respect to the design variables fqig
nq

i¼1 as d ¼ fdigT . The gra-
dient of the cost functional can be written in terms of the directional derivative (the directional derivative is
just the gradient computed in a specific direction). Since we have a scheme to compute the directional deriv-
ative by solving the continuum stochastic sensitivity equations, the gradient of the cost function is then simply
given as d ¼ fdvgT ¼ fDDqv

CF ½fqig
nq

i¼1�=Dqvg
T .

3.6. Optimization algorithm

In the current work, the gradient of the cost functional is evaluated and used in a steepest descent minimi-
zation framework to estimate the optimal stochastic heat flux parameters. This procedure is schematically
illustrated in Fig. 6.

Remark 3.7. With known fqig
nq

i¼1, computing the direct temperature is a fully-decoupled procedure involving
the solution of nq � na deterministic problems. The evaluation of the cost functional involves either computing
moments of the temperature or the inverse CDF of the temperature. This step involves collecting data (from
each decoupled deterministic problem) and computing the necessary quantities (hhpi or ��1½h; u�). The solution
of the stochastic sensitivity equations is again a fully-decoupled operation. This presents the possibility of
solving this problem in an embarrassingly parallel format where the only places where any communication is
required is in the construction of the cost functional and the construction of the gradient with respect to the nq

collocation points.

Step size in the steepest descent algorithm:After computing the gradient of the cost functional, d, the
updated values of the heat flux qiterþ1

i are given as qiterþ1
i ¼ qiter

i � mdi; where m is the step size of descent along
the negative of the gradient. The step size for each of the two cases is given as

Step size, Case I:
m ¼ dT dPp
c¼1bcRc

; ð35Þ
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Fig. 6. Schematic of the inverse problem.
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where
Rc ¼
Xs

j¼1

Z tmax

t¼0

Xnq

r¼1

Xna

e¼1

wr
qwe

ach
c�1ðxj; t; n

r
q; n

e
aÞ

Hðxj; t; n
r
q; n

e
a : fqkg

nq

k¼1;DqrÞ
Dqr

dr

( )2

dt

þ
Xs

j¼1

Z tmax

t¼0

Xnq

r¼1

Xna

e¼1

wr
qwe

ah
cðxj; t; n

r
q; n

e
aÞ � hY cðxj; tÞi

 !

�
Xnq

r¼1

Xna

e¼1

wr
qwe

acðc� 1Þhc�2ðxj; t; n
r
q; n

e
aÞ

Hðxj; t; n
r
q; n

e
a : fqkg

nq

k¼1;DqrÞ
Dqr

dr

" #2
8<
:

9=
;dt: ð36Þ

Step size, Case II:

m ¼ dT d

dT Rd
; ð37Þ

where
Rij ¼
Xs

r¼1

Z tmax

t¼0

Xna

k¼1

wk
aHðxr; t; n

i
q; n

k
a : fqkg

nq

k¼1;DqiÞ
( )

�
Xna

k¼1

wk
aHðxr; t; n

j
q; n

k
a : fqkg

nq

k¼1;DqjÞ
( )

dt: ð38Þ
The complete optimization algorithm is given as

Optimization algorithm:
� Step 1: Select initial guess values for the flux parameters fqig

nq

i¼1. Set the iteration counter iter ¼ 0.
� Step 2: Solve the direct problem (defined in Eq. (12)) using the guessed parameters.
� Step 3: Compute the cost functional CF ½fqig

nq

i¼1� (using Eq. (20) or Eq. (21)). If CF ½fqig
nq

i¼1� < tolerance
STOP, else GOTO Step 4.

� Step 4: Compute the gradient of the cost functional rCF ½fqig
nq

i¼1� (using Eq. (25) or Eq. (26)).
� Step 5: Compute the step size, m, for use in the steepest descent method (using Eq. (35) or Eq. (37)).
� Step 6: Compute the updated flux parameters qiterþ1

i ¼ qiter
i � m�riCF ½fqig

nq

i¼1�. Update the iteration
counter by 1. GOTO Step 2.

3.7. Numerical illustration: 1D inverse heat conduction problem

The methodology discussed above is numerically illustrated here using a series of one-dimensional stochas-
tic inverse heat conduction problems (see Fig. 7). A one-dimensional rod of length L ¼ 1:0 has a temperature
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L
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Fig. 7. Schematic of the 1D inverse heat conduction problem.
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sensor placed at a location one-third the length of the rod. The right end is maintained at T ¼ 0. The thermal
diffusivity, a, of the material is random and follows a chi-square distribution a ¼ 1þ 0:1ðn2 � 1Þ;where n �
Nð0; 1Þ. The problem is to reconstruct the steady-state stochastic heat flux on the left end that results in
the measured temperature. For the sake of clarity and presentation, we consider the non-dimensionalized form
of the equations (unless specified otherwise). Two cases are examined: (I) when only moments of the temper-
ature measured at the sensor are provided and (II) when the PDF of the temperature measured at the sensor is
provided.

Case I: Moments of temperature provided. The first 15 moments of the temperature at the sensor location
are provided. This temperature is computed by first solving a direct problem with a known stochastic heat
flux. The known stochastic heat flux (denoted as ‘experimental’ in the figures and tables) follows a Beta
ðp ¼ 1:5; q ¼ 2Þ distribution:
Beta distribution : n 2 ð0; 1Þ; qðnÞ ¼ np�1ð1� nÞq�1R 1

0 tp�1ð1� tÞq�1dt
:

The direct problem to obtain the ‘experimental’ sensor location temperature is solved using nq ¼ 1025 collo-
cation points to represent the stochastic heat flux, na ¼ 65 collocation points to represent the stochastic dif-
fusivity and using 80 linear finite elements to discretize the spatial domain. It has to be emphasized that
very high levels of interpolation representation of the stochastic spaces as well as the spatial domain (com-
pared to the discretization used in the inverse problem) are considered to prevent the possibility of an inverse
crime being committed.

Convergence with respect to increasing depth of interpolation: A representation based on a uniform random
variable is chosen to construct the optimal stochastic heat flux i.e. qðnÞ ¼

Pnq

i¼1qðniÞLiðnÞ, where n 2 ½0; 1�. The
optimization problem was run using different depths (2,4,6) of interpolation (corresponding to increasing val-
ues of nq ¼ 5; 17; 65). Fig. 8 plots the variation in the cost functional for each of the optimization problems.
Fig. 8 allows us to draw several interesting conclusions about the behavior of the optimization framework.
Notice that the cost functional decreases by two orders of magnitude very quickly (within 15 iterations) in
all three optimization cases (levels 2, 4 and 6). Following this initial rapid decrease, each optimization problem
has a different rate of decrease of the cost functional. It appears that the optimization problem with the lowest
number of design variables (levels 2 and 5 design variables) has the fastest decrease in the cost functional fol-
lowed by levels 4 and 6 optimization problems.

The behavior observed is explained by looking at the form of the cost functional in Eq. (20). We have cho-
sen all the bi to be 1.0 in all the numerical examples. It has to be noted that this particular choice of bi results in
equal weights to all the moments. In contrast, if one knows a priori that the higher moments are much smaller
than the lower moments, appropriately weighted moments (bi � bj for i < j) can be used to ensure that the
higher moments are captured accurately. Level 2 optimization problem quickly captures the first few moments
and the cost functional rapidly approaches an asymptotic value. There are too few variables to completely
capture the required behavior. On the other hand, due to the larger number of design variables (for the level
4 and level 6 optimization problems), the design space is explored at a slower rate, leading to the slower rate of
convergence.

One way of verifying this hypothesis is to let the optimization process run for a large number of iterations
and analyze the behavior of the cost functional. The limited number of design variables in level 2 case should
cause the cost functional of this case to remain almost stagnant, while the cost functional of the other two
cases should decrease. Since, each iteration of this one-dimensional problem takes less than 30 s to complete
on a serial machine, we run all three optimization problems for an additional 1000 iterations. Fig. 9 plots the
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corresponding reduction in the cost functional for these problems, which follows the expected behavior.
Another observation that one can make looking at Figs. 8 and 9 is the ‘arm-chair’ like behavior of the cost
functional. In all three cases, the cost functional has regions of rapid decrease, followed regions of almost
asymptotic behavior, followed again by regions of rapid decrease. This pattern seems to reappear as the num-
ber of iterations are increased. Interestingly, the region of asymptotic behavior (i.e. the number of iterations
where the decrease in the cost functional is very small) becomes smaller as the level of interpolation increases.

Fig. 10 shows a comparison of the first 15 moments of the optimal heat flux computed from each of the
optimization problems with respect to the ‘experimental’ heat flux. Notice that the first few (�7) moments
are accurately captured even by a level 2 interpolation scheme. The results match the ‘experimental’ moments
very accurately as the depth of interpolation is increased, with no difference between the actual value and those
computed using a depth 8 interpolation.

Remark 3.8. From the above numerical experiments, the following conclusions can be drawn: (1) The
optimization problem with coarser representation (i.e. smaller level of interpolation) of the design variable
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converges faster initially, but becomes very slowly converging later and (2) the optimization problem with
coarser representation is numerically faster to solve. These two observations naturally lead to the possibly of
formulating a hierarchical stochastic optimization problem, where a coarser problem is solved to quickly
compute a coarse solution that is in turn used as an initial guess to solve a finer problem. This idea (similar to
the accelerated convergence using multi-grid methods) seems to offer great promise in terms of rapid solutions
to inverse problems through solution of a hierarchy of coarser optimization problems. We make no attempt to
investigate this novel concept in the present paper. Nevertheless, we have applied a rudimentary version of this
concept to solve the above problem.

A hierarchical stochastic optimization framework: Starting from a level 2 representation of the unknown
heat flux, the optimization problem is solved until the cost functional reduces to a value below an a priori
defined cutoff ð� 2� 10�4Þ. The stochastic solution at this stage was used as an initial guess to start an opti-
mization with a level 4 representation. This was solved until the cost functional reduces to a value below an a
priori defined cutoff ð� 2� 10�5Þ. The optimization was stopped when the cost functional reached a value of
4� 10�6. Fig. 11 plots the reduction in the cost functional using this hierarchical multi-level optimization
method as well as the conventional single level (level 6) optimization method. The jumps in the cost functional
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represent the points where a finer approximation of the stochastic space is utilized. We have made no attempt
to optimize the location where this transition to the next higher-level occurs. The figure shows that the hier-
archical multi-level optimization strategy is indeed a promising approach to solving stochastic inverse prob-
lems (with almost an order in magnitude decrease in computational effort).

Invariance with the choice of representation: An analysis of the effect of choosing different representations to
construct the stochastic heat flux is performed next. Four different representations of q based on different sup-
ports and associated PDFs are chosen as follows:

Beta distribution:
qðnÞ ¼
Xnq

i¼1

qðniÞLiðnÞ; n 2 ð0; 1Þ; qðnÞ ¼ np�1ð1� nÞq�1R 1

0
tp�1ð1� tÞq�1dt

:

Gamma distribution:

qðnÞ ¼
Xnq

i¼1

qðniÞLiðnÞ; n 2 ð0;1Þ; qðnÞ ¼ nc�1 e�nR1
0

tc�1 e�t dt
:

Normal distribution:

qðnÞ ¼
Xnq

i¼1

qðniÞLiðnÞ; n 2 ð�1;1Þ; qðnÞ ¼ 1ffiffiffiffiffiffi
2p
p e�

n2

2 :

Uniform distribution:

qðnÞ ¼
Xnq

i¼1

qðniÞLiðnÞ; n 2 ½0; 1�; qðnÞ ¼ 1:

The four optimization problems were run with nq ¼ 257 collocation points to represent the domain of n.
Fig. 12 plots the reduction in the cost functional as a function of the optimization iteration counter for each
of the four cases stated above. Table 1 tabulates the results of the optimization problems. The first column
consists of the first 10 moments of the ‘experimental’ stochastic heat flux. The next four columns consist of
the first 10 moments of the reconstructed stochastic heat flux based on the four different representations of
the random process. Notice that there is negligible difference between the reconstructed values of the optimal
stochastic heat flux and the ‘experimental’ values. The cost functional in all the four cases is less than 10�6.
This corresponds to a reduction in the cost functional by five orders of magnitude. Notice that there is some
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Table 1
Comparison of the first 10 moments

Nth moment Experimental Beta Gamma Normal Uniform

1 0.428581 0.428556 0.428648 0.428452 0.428561
2 0.238119 0.238023 0.237794 0.238350 0.238824
3 0.151551 0.151934 0.151804 0.151774 0.149193
4 0.104942 0.105334 0.105383 0.105039 0.105726
5 0.076981 0.076984 0.077244 0.076812 0.077641
6 0.058892 0.058310 0.058791 0.058348 0.060955
7 0.046519 0.045299 0.045992 0.045543 0.048112
8 0.037683 0.035853 0.036737 0.036266 0.039379
9 0.031155 0.028783 0.029827 0.029317 0.032157
10 0.026195 0.023366 0.024536 0.023977 0.026815
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similarity in how well each of the representations captures the moments. For instance, all the representations
capture the first two moments to 4 decimal digits of accuracy. Similarly, all four schemes compute the ninth
and tenth moments with 2 decimal digits of accuracy. Since the aim of this exercise was to show the invariance
of resulting solution on the representation of the unknown variable, further investigations on utilizing the hier-
archical multi-level optimization method are not performed.
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Case II: PDF of temperature provided.

In this numerical investigation, the PDF of the temperature at the sensor location is provided. This temper-
ature is computed by first solving a direct problem with a known stochastic heat flux. Two cases are considered
here: (a) the known stochastic heat flux has finite support (Beta distribution); (b) the known stochastic heat
flux has unbounded support (Normal distribution). The known stochastic heat flux follows a Beta
ðp ¼ 1:5; q ¼ 2Þ distribution (for case (a)) and Normal distribution ðl ¼ 1:0; r ¼ 0:1Þ (for case (b)). The direct
problem (to define the ‘experimental’ sensor location temperature) is solved using nq ¼ 1025 collocation points
to represent the stochastic heat flux, na ¼ 65 collocation points to represent the stochastic diffusivity and using
80 element to discretize the spatial domain.

Convergence with respect to increasing depth of interpolation: A representation based on a uniform random
variable is chosen to construct the optimal stochastic heat flux i.e. qðnÞ ¼

Pnq

i¼1qðniÞLiðnÞ, where n 2 ½0; 1�. The
optimization problem was run using different depths (2,4,6,8) of interpolation (corresponding to increasing
values of nq ¼ 5; 17; 65; 257).

Fig. 13 plots the computed optimal PDF of the stochastic heat flux for four optimization processes using
different depth of interpolation for case (a), where the ‘experimental’ q has finite support. Similarly, Fig. 14
compares the reconstructed solution with the actual ‘experimental’ result for case (b), where the ‘experimental’
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q follows a normal distribution (unbounded support). As the depth of interpolation is increased, the PDF in
both cases is captured very well. Even a low depth of interpolation of 4 (nq ¼ 17) results in a relatively accurate
match of the main body of the PDF. As the interpolation depth is increased, the tails of the PDF in Fig. 14 are
computed more accurately.

Invariance with the choice of representation: An analysis of the effect of choosing different representations to
construct the stochastic heat flux is performed next (for case (a)). Four different representations of q based on
different supports and associated PDFs are chosen as discussed earlier.

The four optimization problems were run with nq ¼ 257 collocation points to represent the domain of n.
Fig. 15 plots the PDF of the optimal stochastic heat flux computed from each of the four optimization prob-
lems. Notice the negligible difference between the computed PDFs.

Additional illustrations: Reconstructing PDFs of higher-dimensional random processes. In the previous exam-
ples, the input stochastic process that drove the direct problem to obtain the ‘experimental’ statistics was
assumed to be a one-dimensional function (i.e. a univariate random variable). In the following sub-case, this
assumption is relaxed and the ability of the optimization procedure to reconstruct the PDF of the stochastic
heat flux irrespective of the dimensionality of the space in which the flux resides is showcased. As before, the
PDF of the temperature at the sensor location is provided. This temperature is computed by first solving a
direct problem with a known stochastic heat flux. The known stochastic heat flux is defined as follows:
Fig. 15
PDF.
qðn1; n2Þ ¼
Xn

i¼1

aini; ni 2 ½0; 1�: ð39Þ
The ni are independent uniform random variables. n is taken to be 2 and ða1; a2Þ ¼ ð3:5; 2:5Þ. The direct
problem (to obtain the ‘experimental’ sensor location temperature) is solved using nq ¼ 1537 collocation
points to represent the (2 stochastic dimensional) stochastic heat flux, na ¼ 65 collocation points to represent
the stochastic diffusivity and using 80 elements to discretize the spatial domain.

The solution of the inverse problem to reconstruct the PDF of the stochastic heat flux is based on a rep-
resentation using one uniform random variable i.e. qðnÞ ¼

Pnq

i¼1qðniÞLiðnÞ;where n 2 ½0; 1�. The optimization
problem was run using different depths (2, 4, 6, 8) of interpolation (corresponding to increasing values of
nq ¼ 5; 17; 65; 257). Fig. 16 plots the computed optimal PDF of the stochastic heat flux for the four different
optimizations using different depths of interpolation. There is negligible difference between the PDFs gener-
ated using a depth of interpolation 6 and 8. For a depth of interpolation 8, the reconstructed PDF matches
extremely well with the ‘experimental’ PDF.
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4. Numerical examples

The following section contains two numerical examples. In the first example, a two-dimensional stochastic
transient inverse problem is attempted while in the second example a three-dimensional steady-state stochastic
design problem is considered.

4.1. 2D stochastic inverse problem

In the following numerical problem, we showcase the scalability of the proposed framework in solving
large-scale stochastic inverse problems. The region of interest is a two-dimensional domain
D � ½�0:5; 0:5� � ½�0:5; 0:5�. The right boundary of the domain is maintained at a steady (deterministic) value
of h ¼ 0:5. At t ¼ 0, the temperature in the interior of the domain is h ¼ 0. The thermal diffusivity of the
domain is uncertain and is assumed to be heterogeneously distributed over the domain (Fig. 17). The thermal
diffusivity has a mean value of a ¼ 10. It is further assumed that the spatial variation in the thermal diffusivity
follows an exponential correlation (i.e. Cðr1; r2Þ ¼ expð�jr1 � r2j=bÞ). The correlation length is set at b ¼ 10.
There are s ¼ 41 equally spaced sensors inside the domain at a distance d ¼ 0:1 from the left boundary. Each
sensor collects data over the time interval [0,0.5]. This data is given in terms of PDF of the temperature at each
of these sensor location at 50 equally spaced time intervals in time range [0, 0.5]. The inverse problem can now
be posed as the following:

Identify the PDF of the heat flux on the left boundary in the time range [0, 0.5] such that the experimental
measurements are reconstructed.

Following the standard techniques in representing correlated spatial stochastic processes, the stochastic
thermal diffusivity is expanded using a Karhunen–Loève expansion as follows:
aðx; y;xaÞ ¼ ameanðx; yÞ þ
Xm

i¼1

ffiffiffiffi
ki

p
fiðx; yÞni; ð40Þ
where ki and f i are the eigenvalues and eigenvectors of the correlation kernel of the thermal diffusivity vari-
ation. Fig. 18 plots the first few eigenvalues of the correlation matrix. The first three eigenvalues represent
about 96% of the variation. Correspondingly, the thermal diffusivity is represented using three random vari-
ables ni; i ¼ 1; 2; 3. Fig. 19 shows the eigenmodes corresponding to these random variables.
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4.1.1. Computing the ‘experimental’ PDF

A direct problem is solved using an assumed stochastic variation for the heat flux applied on the left bound-
ary. The PDFs of the temperature variation at the sensor locations are computed. This serves as the ‘exper-
imental’ data that is used to run the inverse problem. The direct problem is run using a correlated thermal flux.
The spatial variation of the heat flux is assumed to have an exponential correlation, i.e. Cðy1; y2Þ ¼
expð�jy1 � y2j=b1Þ, with b1 ¼ 0:5. This stochastic heat flux is expanded using a Karhunen–Loève expansion.
The eigenvalues of this ‘experimental’ heat flux are plotted in Fig. 20. The first three eigenvalues represent
about �94% of the variation. The applied heat flux is represented using three random variables.

The heat flux applied has a mean value of 20 and is given a time-dependent damping term expð�btÞ with
b ¼ 2:0. The input heat flux is taken to be of the form:
qexpðy; t;xqÞ ¼ e�bt 20:0þ 5:0
X3

i¼1

ffiffiffiffi
ki

p
giðyÞni

" #
: ð41Þ
The direct problem to obtain the ‘experimental’ statistics is solved using a 80� 80 quad element discreti-
zation of the physical domain using a time step of Dt ¼ 0:0025. There are two sources of uncertainty in this
problem: the uncertainty in the thermal diffusivity (represented in 3D stochastic space) and the uncertainty in
the heat flux applied (represented in 3D stochastic space). The temperature consequently resides in the product
space of these variations – a six-dimensional stochastic space. A sparse grid collocation strategy is used to
compute the temperature variability at the sensor locations. The thermal diffusivity variation is represented
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using a level 6 depth of interpolation (1073 points in 3D space). Similarly, 1073 points are used to represent the
heat flux variation. The stochastic direct problem involves the solution of 1073� 1073 ¼ 1:151� 106 direct
deterministic problems.

The PDF of the applied ‘experimental’ heat flux at different times at two locations on the boundary
ððx; yÞ ¼ ð�0:5; 0:0Þ and ðx; yÞ ¼ ð�0:5;�0:475ÞÞ is given in Fig. 21. Notice that the initially diffuse PDF peaks
and shifts towards a value of zero (i.e. the peak moves left) with increasing time because of the damping effect.
This is clearly seen in Fig. 22 that plots the time variation of the mean flux.

The PDFs of the resultant ‘experimental’ temperature at two locations in the domain
ððx; yÞ ¼ ð�0:4; 0:0Þ and ðx; yÞ ¼ ð�0:4;�0:475ÞÞ are given in Fig. 23. Notice that the initially diffuse PDF
(at t ¼ 0:01) slowly peaks and shifts towards zero with increasing time because of the damping effect. Inter-
estingly, the effect of the uncertain thermal diffusivity is also seen in the bimodal structure of the resultant
PDF.

4.1.2. The optimization problem: computational details and results

A 40� 40 quad element discretization of the domain is utilized to solve the stochastic inverse problem. The
time domain is discretized into nt ¼ 50 equal time steps. The inverse problem is to estimate the time evolution
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Fig. 21. The ‘experimental’ PDF of the heat flux at two boundary locations y ¼ 0:0 and y ¼ �0:475 at different times.
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Fig. 23. The ‘experimental’ PDF of temperature at two sensor locations y ¼ 0:0 and y ¼ �0:475 at different times.
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of the thermal flux at each nodal point on the left boundary. The total number of nodal points on the left
vertical boundary is ny ¼ 41. The heat flux at each of these nodal points is assumed to be an independent ran-
dom variable. Thus, the variation in the heat flux at each nodal point at each time instant has to be estimated.
The total number of random variables that have to be estimated is equal to ny � nt ¼ 2050. The thermal dif-
fusivity variation is represented using a level 5 depth of interpolation. This corresponds to using na ¼ 441 real-
ization of the thermal diffusivity field. Following the collocation based representation rational used in the
current work, each of the random flux is represented as
qðx; t; nÞ ¼
Xnq

i¼1

qðx; t; niÞLiðnÞ: ð42Þ
Without loss of generality, we assume that the heat flux can be represented using one uniform random var-
iable. That is, n ¼ U ½0; 1�. A level 6 depth of interpolation is used to represent each random variable. This cor-
responds to nq ¼ 65. The total number of design variables is consequently nq � ny � nt ¼ 133; 250.
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The optimization problem requires the estimation of the sensitivity of the temperature at the sensor loca-
tions to perturbations to each of the design variables. A set of decoupled deterministic sensitivity problems
were run to construct the stochastic temperature sensitivity. The number of such deterministic sensitivity
problems run is na � ny � nt ¼ 0:9� 106. Each iteration of the optimization problem requires the solution
of the stochastic forward problem. The stochastic forward problem is solved as a set of decoupled direct
deterministic problems. The total number of such direct deterministic problems was N run ¼ na�
nq ¼ 28; 665. Each deterministic problem requires the solution on a 40� 40 quad grid for nt time steps.
The number of degrees of freedom (DOF) in each deterministic problem is Ndet ¼ ð41Þ2 � nt ¼ 84; 050. The
total number of DOF in each direct stochastic solve of the optimization algorithm is
N stochastic ¼ N det � N run ¼ 2:41� 109. Thus, more than a billion DOF are solved at each iteration of the sto-
chastic optimization problem.

The reduction in the cost functional with the number of iterations of the stochastic optimization is shown in
Fig. 24. After the initial large rate of reduction in the cost functional, the rate of decrease of the cost functional
is more or less constant over the course of about 100 iterations. The optimization problem was run using our
in-house Linux super computing cluster. Forty nodes, corresponding to 160 processors were utilized for the
current problem. Each optimization iteration of the problem took 74 min to complete.

Fig. 25 plots the time evolution of the PDF of the heat flux at two different locations on the boundary.
Comparing this with Fig. 23 reveals that the stochastic heat fluxes are reconstructed very well though there
is some pixellation near the tails of the PDF. This could be due to the lower level of resolution of the ends
of the support of the heat flux considering the choice of the depth of interpolation of the random variable
ðnq ¼ 65Þ.

To see if this pixellation disappears when a finer representation of the stochastic flux is used, another opti-
mization was run using a depth 8 interpolation of the stochastic heat flux. This corresponds to nq ¼ 257 design
variables to represent each unknown. We utilize the hierarchical stochastic optimization method (see Remark
3.8) to solve this larger optimization problem. That is, the solution of the previous optimization problem is
used as the initial guess of this finer stochastic optimization problem. Fig. 26 plots the time evolution of
the PDF of the heat flux at two different locations on the boundary. The pixellation near the tails of the
PDF in Fig. 25 is smoothed out by using a higher-depth of interpolation of the stochastic space.

The difference between the exact and the reconstructed stochastic heat flux is defined in terms of the error,
e ¼

Pny

i¼1ð�
�1½qexðxiÞ; u� � ��1½qrcðxiÞ; u�Þ2;where ��1ð�; uÞ is the corresponding inverse CDF of the heat flux at

each nodal point on the left boundary and qex denotes the actual heat flux while qrc denotes the reconstructed
solution. Fig. 27 plots the error for the two optimization problems.
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4.2. 3D design problem: design in the presence of topological uncertainty

We briefly state the problem of interest for the sake of completeness. We are given a micro-scale heat sink
device, made up of a two-phase material of size 20 lm � 20 lm � 20 lm. The exact microstructure of this
device is unknown. Some statistical descriptors of the microstructure can be extracted from the given 2D
experimental image of the microstructure. A specific temperature profile has to be maintained at one end
of the device. This desired temperature is specified as follows: The mean temperature should follow a specified
profile, i.e. T ¼ �0:45þ z�a

a 0:05, where a is the half width of the device, a = 10 lm (see Fig. 28). The standard
deviation of the temperature variation must be limited to 0.05 everywhere. Hence, assume that the required
probability distribution of the temperature is given by Nðl; rÞ, where l ¼ �0:45þ z�a

a 0:05 and r ¼ 0:05.
The design problem can be stated as follows: Design the stochastic heat flux on the left wall, such that in the

presence of topological uncertainties, the above specified thermal profile is maintained. Insulated boundary con-
ditions are enforced on the right boundary.

For clarity of presentation, we divide the solution into multiple sections. The first step is to represent the
topological uncertainty that the limited information about the microstructure causes. We have recently devel-
oped a data-driven model reduction framework to construct viable, realistic low-dimensional stochastic mod-
els of microstructure variability given some limited information [33]. We do not intend to go into the details of
the nonlinear model reduction technique though we briefly state the overall methodology for the sake of com-
pleteness. The interested reader is referred to [33] for a comprehensive treatment of the same.

4.2.1. Representing the topological uncertainty

The limited information about the microstructure results in topological uncertainty which translates to
uncertainties in the thermal properties of the device. We first extract topological statistics from the experimen-
tal image provided. These statistics are then utilized to reconstruct a large set of 3D microstructures
fxig; i ¼ 1; . . . ;N . The next step is then to construct the low-dimensional representation of the class of micro-
structures utilizing the samples fxig; i ¼ 1; . . . ;N .

Data extraction and sample set construction: We assume that we are given one experimental image of the
underlying microstructure of the device. The image, shown in Fig. 29, is of a tungsten–silver composite
[36]. This composite was produced by infiltrating a porous tungsten solid with molten silver. The first step
is to extract the necessary statistical information from the experimental image. The image is cropped, deblur-
red and discretized. The volume fraction of silver is p ¼ 0:2. The experimental two-point correlation S2ðrÞ is
extracted from the image. The normalized two-point correlation ðgðrÞ ¼ S2ðrÞ�p2

p�p2 Þ, is shown in Fig. 30.
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Fig. 25. The reconstructed PDF of heat flux at two boundary locations y ¼ 0:0 and y ¼ �0:475 (with depth of interpolation 6).
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Fig. 26. The reconstructed PDF of heat flux at two boundary locations y ¼ 0:0 and y ¼ �0:475 at different times (with depth of
interpolation 8).
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Fig. 29. Experimental image of a two-phase composite (from [36]).
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The next step is to utilize these extracted statistical relations (volume fraction and two-point correlation) to
reconstruct a class of 3D microstructures. We utilize a statistics based reconstruction procedure based on
Gaussian random fields (GRF). Using this procedure, realizations of 3D microstructure were computed. Each
microstructure consisted of 65 � 65 � 65 pixels. This corresponds to a size of 20 lm � 20 lm � 20 lm. One
realization of the 3D microstructure reconstructed using the GRF is shown in Fig. 31.

Nonlinear dimension reduction and construction of the topological model [33]: The GRF based reconstruction
detailed above was used to generate a set of N ¼ 1000 samples of two-phase microstructure. Each microstruc-
ture is represented as a 65 � 65 � 65 pixel image. The three-point correlations of all of these samples are cal-
culated. Based on the calculated S3, the pairwise distance matrix P is computed. From this, the geodesic
distance matrix M and the graph G [33] are computed. These are used to estimate the optimal dimensionality
of the low-dimensional space. The dimensionality was estimated to be d ¼ 9. Multi-dimensional scaling
(MDS) is performed using the geodesic distance matrix M. The nine largest eigenvalues and their correspond-
ing eigenvectors are used to represent the input samples. The low-dimensional region A is constructed as the
convex hull of these Nð¼ 1000Þ nine-dimensional points ni. This region coupled with the suitable mappings
ðGM

A ðnÞÞ define the reduced-order stochastic input model F : A!M.

4.2.2. Representing the stochastic flux

Parametric representation of deterministic functions: Consider a deterministic heat flux qðy; zÞ, ðy; zÞ 2 oDh.
There are many methodologies to parametrically represent qðy; zÞ (wavelets, polynomials, Bézier surfaces
among others). Consider a Bézier curve representation of the heat flux qðy; zÞ. A Bézier curve is a parametric



Fig. 31. One instance (realization) of the two-phase microstructure.
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curve, used in representing surfaces in various CAD and engineering practices. A given Bézier curve of order
ðmx;myÞ is defined by a set of ðmx þ 1Þ � ðmy þ 1Þ control points P i;j. It maps the region ½0; 1�2 into a smooth-
continuous surface. A Bézier representation of the heat flux, qðy; zÞ, is defined (in terms of the normalized
coordinates, u, v) as
qðu; vÞ ¼
Xmx

i¼0

Xmy

j¼0

P i;jBmx
i ðuÞB

my
j ðvÞ; ð43Þ
where
Bmx
i ðuÞ ¼

mx!

i!ðmx � iÞ! uið1� uÞmx�i
: ð44Þ
Parametric representation of stochastic functions: A deterministic function qðy; zÞ is represented in terms of
the ðmx þ 1Þ � ðmy þ 1Þ deterministic parameters P i;j. Note that the parameters P i;j are completely independent
of each other. Now consider the stochastic function qðy; z; nÞ. A general parametric representation of the sto-
chastic function can be constructed by simply considering the deterministic parameters P i;j to now be indepen-
dent random variables. The stochastic flux can be written as
qðu; v; nÞ ¼
Xmx

i¼0

Xmy

j¼0

P i;jðnði;jÞÞBmx
i ðuÞB

my
j ðvÞ; ð45Þ
where n ¼ fnði;jÞg; i ¼ 1; . . . ;mx; j ¼ 1; . . . ;my . Following the discussion in Section 3, we represent each sto-
chastic P i;j using a finite number, nq of deterministic realizations as P i;jðnði;jÞÞ ¼

Pnq

k¼1P k
i;jLkðnði;jÞÞ. The stochas-

tic heat flux is then represented as
qðu; v; nÞ ¼
Xnq

k¼1

Xmx

i¼0

Xmy

j¼0

P k
i;jB

mx
i ðuÞB

my
j ðvÞ

" #
LkðnÞ: ð46Þ
The stochastic flux qðy; z; nÞ is represented by the ðmx þ 1Þ � ðmy þ 1Þ � nq scalars fP k
i;jg.

4.2.3. The optimization problem: computational details and results

The computational domain is normalized to ½0; 1�3 and a 64� 64� 64 hexahedral discretization of the
domain is used for all the computations. Each node in the mesh corresponds to a phase – silver or tungsten.
The thermal conductivity assigned to each node is normalized to 1.0 or asilver=atungsten.
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Fig. 32. Reduction in the cost functional during the optimization procedure.
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The two stochastic spaces, representing the topological variation and the heat flux variation are represented
using a collocation based representation, The topological variations is represented using 1177 sampling points
(na ¼ 1177). This corresponds to a level 3 interpolation of the 9D stochastic space. The heat flux variation is
represented using 65 sampling points ðnq ¼ 65Þ. This corresponds to a level 6 interpolation. The total number
of design variables are nq � mx � my ¼ 65� 5� 5 ¼ 1625. Each direct problem involves the solution of
nq � na ¼ 76; 505 deterministic PDEs. The sensitivity temperature is computed by the solution of
mx � my � na ¼ 29; 425 deterministic continuum sensitivity equations. Each deterministic equation is solved
in a ndof ¼ 65� 65� 65 hexahedral grid. The total number of unknowns solved for in each iteration is
ndof � nq � na � 2:1� 1010. Each iteration took about 9 h to complete on 46 nodes of our in-house Linux
based super computing cluster. Fig. 32 plots the reduction in the cost functional as the number of iterations.

Fig. 33 shows some first- and second-order statistics of the designed heat flux. Fig. 33 (top left) plots the
(optimal) mean (expectation of the) heat flux that should be applied to achieve the desired thermal profile.
Fig. 33 (top right) plots the bounds on the heat flux. These bounds are computed as +/� one standard devi-
ation from the mean heat flux. The lower- and upper-bounds on the heat flux are plotted again for clarity in
Fig. 33 (bottom left, right). Notice that the bounding curves become almost identical towards the top half of
the device (increasing z). This suggests that the range of the PDF of the heat flux applied at points on the top
half of the device ðz > 10 lmÞ becomes quite small.

The PDF of the optimal heat flux to be applied at six points (with increasing height) lying on the mid-plane
of the left boundary are computed. Denote these points as Pt A–Pt F (see Fig. 28). These points have constant
ðx; yÞ ¼ ð0; 9:375Þlm coordinates. The z coordinates of the points are z = 0,3.125, 6.24,9.375, 12.5, 18.75 lm,
respectively. The PDF of the corresponding heat fluxes are plotted in Fig. 34. Notice the gradual shifting
of the peak of the PDF to the right. More interestingly, notice that the designed PDF becomes narrower with
increasing height. What does this mean physically? Our design criterion is to maintain a specific temperature
profile (within a given tolerance) at the right wall in the presence of topological uncertainties. As stated before,
the thermal variations on the right boundary are a consequence of the combined effect of the variations in the
underlying topology as well as variations in the applied heat flux. Now, an almost deterministic heat flux in
some regions (that is, when the PDF of the heat flux in some regions becomes very peaked) signifies that the
underlying topological uncertainties by themselves cause such large variation in the thermal profile that there
can only be a very small allowance for variation in the designed heat flux, if the design criterion have to be
satisfied.

Several significant conclusions about the framework can be drawn from this observation: (1) the design
framework automatically accounts for the effects of multiple sources of uncertainties and (2) the stochastic
optimization/stochastic sensitivity framework can be naturally used to quantitatively predict which source

of uncertainty causes large variabilities in the measured/observed dependant variable. This can have major



Fig. 33. The optimal flux (nq ¼ 65, and (5,5) Bézier parameters): Top left: The mean value of the designed flux. Top right: The bounding
heat flux surfaces (mean þ=� one standard deviation). The higher and lower bounding surfaces are re-plotted separately in the bottom
row for clarity.
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ramifications when there are multiple sources of uncertainties and performing experiments to reduce all these
uncertainties is not feasible.

To see if the designed heat flux satisfies the design criterion, the PDFs of temperature at six points on the
right boundary are computed. These points (denoted as Pt A0–Pt F0) lie on the mid-plane of the right boundary
(see Fig. 28). These points have constant ðx; yÞ ¼ ð20; 9:375Þlm coordinates. The z-coordinates of the points
are z = 0,3.125, 6.24,9.375, 12.5,18.75 lm, respectively. The PDFs of the corresponding heat fluxes are plotted
in Fig. 35. Note the steady decrease in the mean value of the PDFs as the corresponding height of the sampling
point is increased. This variation closely follows the desired thermal profile (linearly varying thermal profile).
Also note that the standard deviation of these PDFs are around 0.05 which is the desired deviation. This can
be clearly seen in Fig. 36 which plots the standard deviation of temperature at all the nodal points on the right
boundary. Notice that the desired standard deviation of 0.05 is achieved in almost the whole of the region.
Fig. 37 plots the corresponding mean temperature at all the nodal points on the right boundary. There is a
linear variation of the temperature along the z-direction. The effect of the topological uncertainties is to make
the mean temperature profile highly anisotropic and non-uniform.

4.2.4. Convergence analysis

We conclude this example with a discussion of the convergence of the stochastic design solution with
respect to two quantities, namely

� Convergence with respect to the approximation of the design space.
� Convergence with respect to the number of Bézier control points.
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Fig. 34. The PDF of the optimal heat flux at six locations on the left boundary (on the mid-plane with
z = 0,3.125,6.24,9.375,12.5,18.75 lm, respectively). Note the gradual shift in the peak of the PDF to the right.
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Fig. 36. Standard deviation of the temperature on the right boundary.
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Fig. 37. Mean temperature on the right boundary.

Fig. 38. The optimal flux with a finer discretization of the stochastic space (nq ¼ 127, and (5,5) Bézier parameters): the figure on the left
plots the mean heat flux. The figure on the right plots the bounding heat flux (mean þ=� one standard deviation).



Fig. 39. The optimal flux with a finer Bézier discretization of the heat flux surface (nq ¼ 65, and (9,9) Bézier parameters): the figure on the
left plots the mean heat flux. The figure on the right plots the bounding heat flux (mean þ=� one standard deviation).
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Fig. 40. Comparison of the reconstructed PDFs at three points on the left boundary (Pt A, Pt B, Pt C).
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In the first convergence study, the representation of the designed stochastic space Xq is changed. Instead of
utilizing nq ¼ 65 collocation points (Fig. 33), nq ¼ 127 collocation points are utilized. The optimization prob-
lem now is used to design nq � mx � my ¼ 127� 5� 5 ¼ 3175 variables. Fig. 38 plots the corresponding opti-
mal flux. The difference between the two fluxes is of the order of < 0:1% of the nq ¼ 65 heat flux. The difference
is defined as e ¼

Pnno
i¼1ð�

�1½q1ðxiÞ; u� � ��1½q2ðxiÞ; u�Þ2;where nno is the number of nodes on the right wall,
��1ð�; uÞ is the corresponding inverse CDF of the designed heat flux at each nodal point on the left boundary
and q1 denotes the solution with nq ¼ 65, while q2 denotes the solution with nq ¼ 127.

Since we utilize Bézier surfaces to parameterize each of these nq deterministic heat fluxes, in the second con-
vergence study, the parametric representation (i.e. number of Bézier control points) of the heat flux is refined.
Instead of utilizing ðmx;myÞ ¼ ð5; 5Þ control points, ðmx;myÞ ¼ ð9; 9Þ control points are utilized. The optimiza-
tion problem now is used to design nq � mx � my ¼ 65� 9� 9 ¼ 5265 variables. Fig. 39 plots the correspond-
ing optimal flux. The difference between the two fluxes is of the order of < 0:7% of the ðmx;myÞ ¼ ð5; 5Þ heat
flux representation.

A comparison of the reconstructed PDF of heat flux at three points (Pt A, Pt B and Pt C defined earlier) is
shown in Fig. 40.

5. Summary

The underlying idea developed in the present paper is a scalable methodology that provides the ability to
perform design/estimation in the presence of multiple sources of uncertainties while relying purely on deter-
ministic simulators. The reliance on purely deterministic simulators is accomplished through constructing the



4734 N. Zabaras, B. Ganapathysubramanian / Journal of Computational Physics 227 (2008) 4697–4735
solution of the stochastic direct problem using sparse grid interpolation strategies. This effectively removes the
necessity for overhauling and rewriting of complex deterministic codes to use them in a stochastic setting.

Several issues related to existence and uniqueness of stochastic parabolic and elliptic equations are consid-
ered and discussed in the present work. A physically motivated framework (based on arguments of measur-
ability/observability of random processes) is used to pose the stochastic inverse problem. A novel
stochastic sensitivity technique is developed that effectively results in the construction of the stochastic sensi-
tivity solution via repeated calls to deterministic sensitivity/direct problems. By using the sparse grid interpo-
lation formulation, the stochastic optimization problem is converted to a deterministic optimization problem
in a larger-dimensional space. This naturally allows us to utilize mature deterministic optimization algorithms
to solve the stochastic optimization. We have also alluded to a promising extension to this stochastic optimi-
zation technique – a hierarchical stochastic optimization algorithm which seems to provide significant compu-
tational gains.

We showcased the effectiveness and scalability of the developed framework by solving realistic inverse and
design problems in two- and three-dimensions. In the first example, we showcased the ability of the framework
to solve inference problems. That is, given some sensor data, the framework was utilized to reconstruct/esti-
mate the heat flux that resulted in that sensor measurement. This can naturally incorporate the problem of
estimation in the presence of sensor error. Similar to Bayesian inference, the sensor error can be assumed
to be an additive noise factor with some distribution. This distribution can be the input data to the stochastic
optimization framework, which reconstructs the PDF/moments of the heat flux that result in the given input
distribution. However, it has to be noted that Bayesian techniques to deal with measurement data provided in
the form of a PDF have not yet been explored. In the second example, we showcased the ability of the frame-
work to solve design problems. That is, given a desired distribution (via PDF or moments) of the dependant
variable (temperature), the distribution (PDF/moments) of the heat flux that result in the desired temperature
distribution is constructed. This framework naturally accounts for information in terms of single measure-
ments (with assumed additive noise), statistics of the measurements and as PDF of the measurement (or
desired variability).

We are currently investigating extensions/improvements of the proposed stochastic optimization frame-
work along with the application of this framework to the robust design of materials processes as well as sto-
chastic estimation in geological engineering.
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